Lecture 24

Weill prove the orbit-stabilizer theorem in e this lecture. Let's see why "should" the theorem be true. Below, weill find the number of rotational symmetries of a cube in two different ways. Weill see later that both of them are actually versions of the orbit-stabilizer theorem.

Rotational symmetries of a cube

Recall from our discussion of the dihedral group that a symmetry of an n-gon is a transformation which might change the places of vertices and edges but doesn't change the shape of the n-gon.

But we can do the Jame thing with a cube.
Let G be the group of rotational symmetries of a cube.

so for example, the above figure demonstra-- Les the rotation of the cube by $90^{\circ} \mathrm{ir}$ the counterclockwise direction along the axis shown in red. The position of the vertices changed but the shape and size of the cube didn't. So this is an escomple of a rotational symm-- etry of the cube. We want to find out the \# of all such symmetries, i.e., |Gl.

Of course, you can just find it by brute force. However, we will be smarter (or atleast, pretend to be) and calculate it combinatorially (which well see to be basically using the Orbit. Stabilizer theorem).

Method 1

Consider the face F_{1} of the cube (containing the vertices a, b, c, d). If we perform any rotational symmetry of the cube, the face F_{1} might change its position. Since there are 6 faces in e a cube so the \# of places
where F_{1} can co $=6$.
Now since we cannot change the shape and size of the cube, the vertices a, b, c, d of the face F_{1}, only have the liberty to move among themselves. So once F, has chosen its place, there are a total of 4 rotations which will keep F_{1} fixed but permute the vertices among themselves. e.g.

do 90° rotation around the red $\xrightarrow{ } \rightarrow$ 90° rotation about the green axis

and similarly

In all the above figures, the face F_{1} is at the same place, only the position of its vertices are changing.
But any rotational symmetry of the cube will do the some thing. So there are a total of $6 \times 4=24$ rotational symmetries.

$$
\Rightarrow \quad|G|=24 .
$$

Method 2

In method 1 we worked with a face. Here, let's work with a vertex. Suppose, we choose a vertex ' a ' in the cube. Following any rotation, ' a ' has 8 choices to move around. But since the rotation must be a symmetry \Rightarrow the immediate neighbour venti--aces of 'a', ' b ', ' d ' and ' e ' must be attar--had to it and com only move among themselves. So once ' a ' has chosen a position, its immediate neighbours have 3 choices and hence for a rotational symmetry, there are $8 \times 3=24$ choices. So again

$$
|G|=24 .
$$

Now how does the Orbit-Stabilizer theorem relates to finding $|G|$?

Let $G=$ group of rotational symmetries of the cube
$F=$ set of faces of the cube and consider the action of G on F by taking a rotational symmetry and a face, say F_{1}, apply the rotational symmetry to the cube and look at place which F_{1} takes, which is again going to be some fare of the cube and hence lies sir F.

What is $\left|O_{F_{1}}\right|$? This is just the path which F_{1} takes under the action by G but it is just the $\#$ of choices for $F_{1}=6$. What is $\left|\operatorname{Stab}\left(F_{1}\right)\right|$? Well, F_{1} will be stabilized under the action if the rotation doesn't
change the position of F_{1}. But it can still change the position of vertices of F_{1} and hence $|S \operatorname{tab}(F)|=4$.
Since the O.S theorem says $|G|=\left|D_{f}\right|\left|\operatorname{stab}\left(F_{1}\right)\right|$

$$
\Rightarrow|G|=6.4=24 .
$$

So method 1 io just apply the orbit stabilizer theorem to a particular action of G.

But we can do the same thing in method 21 Take G as it is and now consider the set as $V=$ set of vertices of the cube The action of G on V is just pick a vertex, say ' a ', act it by the rotational symmetry and look at it's new position which will again be iss V. One can find (by a similar reasoning as above) that $\left|\mathrm{O}_{a}\right|=8$ and

$$
|\operatorname{Stab}(a)|=3=|G|=\left|0_{a}\right| \cdot|S \operatorname{tab}(a)|=24 .
$$

So now that we have seen some applications of the D.S Theorem, let's now prove it.

Theorem [Orbit-Stabilizer Theorem]
Let G be a group which acts on a set X.
Let $x \in X$. Then $[G: \operatorname{Stab}(x)]=\left|0_{x}\right|$. If G is finite then $\left|O_{x}\right|=\frac{|G|}{|S \operatorname{tab}(x)|} \Rightarrow|G|=\left|O_{x}\right||S \operatorname{tab}(x)|$.

Proof Consider the set $C=\{g S t a b(x) \mid g \in G\{$. the set of all left coset of Stab (x) ie G. $O_{x}=\{g \cdot x \mid g \in G\{$. Define a map

$$
\begin{aligned}
T: C & O_{x} \quad \text { by } \\
T(g \operatorname{stab}(x)) & =g \circ x
\end{aligned}
$$

We must check that T is well-defined (recall Principle 2) as it is map from the set of
coset.
Ti well-defined
Let $g S \operatorname{tab}(x)=h S \operatorname{tab}(x)=h^{-1} g S \operatorname{tab}(x)=$

$$
\text { Stab (x) } \Rightarrow \quad h^{-1} g \in S \operatorname{tab}(x)
$$

$$
\Rightarrow \quad\left(h^{-1} g\right) \cdot x=x
$$

$=h^{-1} \cdot(g \cdot x)=x \quad$ [From point 2) ire the definition of a group action]

We can act by $h \in G$ on both sides of the above equation.

$$
\begin{aligned}
& h \cdot\left(h^{-1} \cdot(g \cdot x)\right)=h \cdot x \Rightarrow \quad e \cdot(g \cdot x)=h \cdot x \\
& \Rightarrow \quad g \cdot x=h \cdot x \\
& \Rightarrow T(g \operatorname{stab}(x))=T(h(\operatorname{stab}(x))
\end{aligned}
$$

and hence T is well-defined.

Tis one-one

Let $T(g S \operatorname{tab}(x))=T(h S \operatorname{tab}(x))$

$$
\begin{array}{ll}
\Rightarrow & g \cdot x=h \cdot x \\
=D & h^{-1} \cdot(g \cdot x)=h^{-1} \cdot(h \cdot x)=e \cdot x \\
\Rightarrow & \left(h^{-1} g\right) \cdot x=x=0 \quad h^{-1} g \in S \operatorname{tab}(x)
\end{array}
$$

(by the definition of $S \operatorname{tab}(x)$)

$$
\begin{array}{ll}
\Rightarrow & h^{-1} g \operatorname{Stab}(x)=\operatorname{Stab}(x) \\
= & g \operatorname{Stab}(x)=h \operatorname{Stab}(x)
\end{array}
$$

and hence T is one-one.
T is onto
Let $y \in O_{x} \Rightarrow \exists g \in G$ sot. $y=g \cdot x$ Consicler the coset $g \operatorname{stab}(x) \in C$. Then by the definition of T

$$
T(g s \operatorname{tab}(x))=g \cdot x \Rightarrow T \text { is onto. }
$$

So T is a bijection $b / w ~ C$ and O_{X}.

But $|C|=[G: S \operatorname{tab}(x)]$

$$
\begin{aligned}
& =0 \quad[G: S \operatorname{tab}(x)]=\left|O_{x}\right| \\
& \text { If } G \text { is finite } \Rightarrow[G: S \operatorname{tab}(x)]=\frac{|G|}{|S \operatorname{tab}(x)|} \\
& \Rightarrow \quad|G|=|S \operatorname{tab}(x)| \cdot\left|O_{x}\right|
\end{aligned}
$$

Remark Note that the O-S Theorem holds for any group G with any action on any $\operatorname{set} X$.

So for example, if G acts on itself by conjugation the we saw in Lee. 23 that $\operatorname{stab}(g)=C(g)$, the centralizer of g in G. Thess in that case

$$
[G: G(g)]=\left|O_{g}\right|
$$

As an application of the O-S Theorem, let's reprove Lagrange's theorem.

Lagrange's Theorem If G is finite and $H \leq G$ $=0 \quad|H|| | G \mid$.
Proof Let $C=\{g H \mid g \in G\{$ be the set of left cosets of H in G. Consider the action of G on C by

$$
\begin{aligned}
& G \times C \longrightarrow C \\
& x, g H \longrightarrow x g H
\end{aligned}
$$

i.e, multiply the group elements x and g and consider the coset containing $x e g$.
Consider the element $H \in C$.

$$
\begin{aligned}
\operatorname{Stab}(H) & =\{x \in G \mid x \cdot H=H\{ \\
& =\{x \in G \mid x H=H \Delta=0 x \in H\{ \\
& =H
\end{aligned}
$$

So under this action $\operatorname{Stab}(H)=H$.
But from the O-S theorem, as G is finite

$$
\begin{aligned}
& |G|=\left|O_{H}\right||\operatorname{stab}(H)| \Rightarrow|S \operatorname{tab}(H)|| | G \mid \\
\Rightarrow & |H|||G|
\end{aligned}
$$

So as you can see, well choose our set X as per our need and the action will be chosen accordingly. Then we can use the O-S Theorem to prove powerful theorems.
\qquad
\qquad x \qquad -

